
------.--- . *
P
r

5 7 4 /

Programming Support Environment Issues in t h e

Byron Programming Environment

Matthew J. Larsen
Intermetrics, Inc.

733 Concord Avenue
Cambridge, M A 02138

absfrocf: This paper discusses issues which programming support environments
need to address in order to successfully support software engineering. Thesc:
concerns are divided into two categories. The first category, issues of how
software development is supported by an environment, includes support of the
full life cycle, methodology flexibility and support of software reusability. The
second category contains issues of how environments should operate, such as
tool reusability and integration, user friendliness, networking and use of a
central data base. This discussion is followed by an examination of Byron, an
Ada based programming support environment developed a t Inkrmetrics.
focusing o n the solutions Byron offers to these problems, including the support
provided for software reusability and the test and maintenance phases of tho
life cycle. The use of Byron in project development is described briefly, arid
the paper concludes with some suggestions for future Byron tools and user
written tools.

1. Introduction

Over the past two decades, producers and consumers alike of software product.\
have becoiiie increasingly concerned with what has become known as thtt
”software crisis”. As computer hardware has evolved to enable the processing
of more and more data a t faster rates, the range of pra:tically solvable problems
has grown. Yet our ability to manage the growing capabili t i t~ of computer
hardware, as Djikstra 111 has stated, has lagged. In order to combat tht.
software crisis s u c h weapons as design methodologies and software support
tools have come into existence. Collections of these tools have become k~iown
a3 progranirriing support eovironmerits, and there has been a gradual realization
that such environments can be valuable. lvie 121 identifies several benctits ot’
such systenis, including commonality o f documentation, developmelit 01 ’
standards and enhanced prograrrimor mobility u i d retraiiiability.

There is much disagreement concerning exactly which tasks a programming
environment should support. The DoD has issued Stoneman [31, a documen t
specifying the requirements an Ada* programming environrnerlt mus t meet, but
Stoneman focuses primarily on how the tools are to work in general, no t o n the
needs to be fulfilled by the tools. In this paper we shall first examine issues
which programming environments, particularly A d a environments, m u s t
address. This will be followed by an examination of Byron, an A d a based
programming enviroiiment developed at Intermetrics, and how Byron deals
with these issues. We shall then examine how Byron might be applied to a
project.

2. Programming Support Environment Issues

There are two sets of issues relating to programming environments. The first
set focuses o n how the environment supports software engineering. Included
here are full life cycle support, support of software reusability and rnethodology
flexibility. The second se t is concerned with how the environment operates
internally, including issues of environment integration, flexibility and user
friendliness.

2.1 Software Engineering Issues

The purpose of a programming erivironnient is to support software engineering.
There are four concerns which must be addressed in order to do this
effectively. First, the full software life cycle must be supported. Second, the
user m u s t be able to move freely from one life cycle phase to another. Third,
the environment must not restrict the choice of riielhodologies available to the
user, and finally, the environrnent must actively support the reuse of software.

2.1.1 Full LiIe Cycle Suppor t

Frequently, the software life cycle is modeled as a discrete, linear process 1.1).
Initially requirements are drawn up, then a software system is specified.
designed, implemented, tested and finally maintained. Each phase is treated
separately, and is corriplck'd bcfore the next phase begins. If revisions mus t be
made, the process loops. For exarnplc, implementation might halt while thc
design is reworked, and then the implementation would be modified. 'l'lie
resul t of each phase is a docurnent describing the resul ts of that phase (i n
irnplernentatiori this is the actual code). Note that thcse documents are oflc3n
of vital importance to the following phases. Icor example, it is irnpossiblc to
test a software system without kriowing what it is required to do. Similarly, a
dvsigri docrirneri t rnay givc! a valriahle ovc.rvirw of a syskrn to th(3 iiiaintencnw
h*;irri.

ORiGlNAL PAGE IS
OF NK)R QUALITY

13.2.1.2

c-2.

In the past, automated support existed only for the implementation phase.
Even now, research on programming environments is mostly directed toward
the code-compile-debug cycle 151. However, errors are cheaper and easier to
flx if they are discovered earlier in the lifecycle. Also, i f the computer is only
usable for implementation, programmers will tend to concentrate on that phase.
So the need for good tools which assist with earlier life cycle phases is
paramount. A s Gutz et al. [Si report, an environment must provide support
throughout the life cycle.

2.1.2 Mobility Between Li fe Cycle Phases

Although the view of the life cycle aa a discreet process is useful, it is n o t
wholly adequate. Often an error is discovered which requires adjustments in an
earlier phase. Because of deadline pressures, tlie corrections are usually made
only in the current phase, which then bears some relation to the previous
phases, but is n o t a direct descendant. Thus, the resulting implementation is
based on an underlying design which evolved separately from the design
document. The differences are likely to be subtle and difficult to understand,
bu t are almost certainly important. If, however, there is a simple way to update
the results of a previous phase (in this case the design document), the results
of the phases are more likely to remain consistent with each other.

The essential problem, therefore, is to keep the documentation for the earlier
phases consistent wi th the current phase. Naturally the previous phases ;ire
reflected in the current phase, although the information may be implicit rather
than explicit. Fo r instance, in Ada code some portions of the design are readily
visible in the specifications of packages and the decisions concerning thc
grouping of subprograms into packages. Since the packages also con taiir
information unimportant to the design, what is needed is a tool to distill the
design o u t of the code. Dut in order to do this, the entire design must bc~
explicitly stated, as must any other information we might want to us(* iir

creating reports. One way of providing easy mobility between life cycle ph:tsos
is to introduce a programming language which permits explicit stateiiicnt of
information concerning all phaues.

2.1.9 Methodology Flexibi ldy

There are rriany differerit software eriginceririg rriethodologies, aiid new' oikt*s

appcar with frequency. Even such basic concepts m thc lift! cycle are called i r i l ~
question 171 and rc:visc:d regularly. It has become clear [81 that e n v i r o n i u e r l ~ ~
must be flexible enough to perrriit a variety of rriethodologies and the evolution
o f new methodologies, sirice dificrcnt problerns requirc! diflercnt nlc~thot!s ()I'
solritiori. I n ordcr to provide this flexibility, erlvironln(.nts must pcrlllit t , I 1 (5

oxpression of rnarly diIT(!rc:nt kinds of information and also the cakgorizatioil o f
this iriforrrr;ition i n rrr;irry tliflercirt ways . 'I'he C ~ I V ~ ~ O I I I J ~ C I I t must the11 provitlc
;L(:WSS to this i ~ i f o r r r i a l ~ i o r i , ;w w c will sc!o below. 'l'tlp i1nport;inrc oI' []lis

llcxihility can riot hc ovcrutakd.

11.2.1.3

8.1.4 So/tuare Reusability

The software industry has recognized the need to avoid continuously rewriting
various pieces of software. One of the major goals of Ada is the proliferation
of large libraries of reusable packages, in order to address this need. However,
there is a very real daiiger, even in small environments, that one programmer
might no t know what other programmers have already done. Even if code is
known to exist, it niay be difficult to determine whether the package actually
does what is necessary (and whether it has side effects), or whether it can be
easily modified. If the only way to identify the functionality and effech of a
package is to read the code, much of the advantage of reusing the code may be
10s t.

The suitability of a given package for a givcn task is best evaluated by
examining the design of the package, if that information is accurate. Therefore
we see that the design information should be explicitly stated, and extractable
from the code. Furthermore, this information must be in a concise and
standard format, so users will be able to quickly sift through the available
packages to find what they need. It is important for the environment to
support the act of finding software which could be reused.

2.2 Environment Operation Issues

Although the support of software engineering is the primary goal of
programming environments, issues concerning the operation of the
environment are also important. If the tools are too clumsy to use, the
environment will not be useful. Osterweil [91 identifies five characteristics
essential to programming environments: breadth of scope and applicability, user
friendliness, reusability of components, integration, and use of a central data
base. The first of these includes the issues we identified above as methodology
flexibility and life cycle coverage. The rest we shall consider below.

User friendliness is a broad term, includiilg many fairly obvious poiiits. U s e r
interfaces should be consistent; help should bc on- l ine and easily accessiblc;
tools should perform obvious functions and be free from contradictory and
confusing options. A less o b v i o u s aswct of this issue is that tools should n o t
overlap i n function, w h i c h will teiid tu confuse the users in choosing which tool
is best suited to a specific task. Also, a use r who needs to perform a specific
task should be able to find tht tool which does that task without intilllately
knowing all the tools.

In order to provide a flexible methodology as discussed above, the coiiiponent
Coolset must itself ht: flexible. 'i'his holsct can tlieri be the. basis f o r ncw LOOIS
tailored to fit the projc(.t. Ilcrglantl arid Gordon IlOl comment that "if the tools
wine first, too ofkn tht: design and devclojmeiit methods end u p
;ic.corlltrlodatirig the bois ii~sk;ttl o f vice v(!rsa.n 'I'his implies, ;tiiiong otticr
t,Iiiiigs, that ;L fwility for wrrihiriing kx,ols r i i i i s t exist. 'I'hc power of this
;tpproach is well kilf)wrI f r o i l l c.xp~ricrlccs wi th the I J n i x * prograi~iiiiiilg

13.2.1.4

environment. It is, however, not well understood which tools should comprise
the toolset. Presumably, the next few years of research will begin to identify
the essential tools.

I t is also important that the tools be well integrated, that is, they should work
together to provide an abstraction which assists the user in working within a
particular development methodology, and shields the user from the delails o f
the environment. Thus the interaction of the tools should be controlled in
order to avoid hidden side effects, yet reuse operations where possible. Since
we have already acknowledged the fact that the user is expected to augment the
environment with addition;il tools, this goal can only be partially achieved.
However, the sel of reusable elementary tools should certainly abide by these
rules.

The idea of a central tl; ita bzse which contains all the information relevant to R

project is one of the most widely accepted concepts concerning programming
environmeiib Il l] . W c identified a need earlier for a language which can be
used to express all LIIC iiiforxation concerning a project. It is even mow
important that all tlliv ;iiforrrriatiori Le stored in one place. This can then be
used to maintain v:iricus versions of a project, structure and retrieve
information in managcnblc: pieces aild most importantly, maintain a single set
of documents which describe the state of the project at any given momenl.

3. The Byron Programming Support. Environment

We will n o w review the Byron Programming Support Environmenl, aiicl

examine h o w it addresses the issues identified in the previous section. TLic,
three important aspects of the environment are how the data enters tl ic.

environment, how it is stored, and what tools are available to access the stored
information. T h e prirriary means of expressing information to be entered i r i r o

the Byran crivironrneiit is the Byron program developrncnt language (P U L) .
The P D L text is analyzed and stored in a structured data base (the prograiii
library). Once stored, lhc informalion is available to the va r ious tools wliich
coin prise the Byron prograin rriirig support e n vir011 r ~ i e n t.

3.1 The Byron PDL

l'hc Byron prograrnniirig support cnvironrnent is centered around :LI~ Ada-basvcl
program development language (Dyron/Ada PD L) . Byron is compatible Lo Ad;]
since a n y legal Ada program is also legal Byron, arid vice versa. I3yroii ~)rovi(ic~s
a consisterit way of ciilcring information into the criviroiiiiient througliout the
software life cycle, and thus smooths the transition from one phase to aiiotlicr.

B.2.1.5

,Byron constructs are included with the Ada code in the form of annotated
commenta. (see [l2] and [13] for more detail). The Byron PDL is designed to
augment Ada's design language abilities by formally and efficiently expressing
information produced in the course of engineering a large software system
which cannot be expressed in Ada, Ada has many features which assist and
improve design; however, it has been recognized that there is information
which is not required by or even expressible in modern programming
languages, including Ada, but which is nevertheless important and valuable
1141, [15], [IS]. This information is mostly semantic in nature, concerning tlhe
use or purpose of data items or subprograms. Consider the following Ada
subprogram specification

function CopyLinkedList (List : in ListPtr) returns ListPtr;

This is sufficient for compilation; however, in order to use the function there
are details one needs to know, such as whether a physical copy of each list
element is made, or merely a copy of the pointer to the list. Byron permits the
methodical inclusion and retrieval of such information.

Information is expressed in Byron either as Ada code or as Byron annotations.
Annotations are formed with the prefix "--I' followed by text. In general, the
text of an annotation is associated with the Ada construct that precedes the
annotation. A n annotation may also contain a keyword which categorizes the
information. This permits the user to tailor the Byron PDL to suit many
different tasks. For exarnple, the effect of the CopyLinkedList subprograni
might be described with the effects keyword, e.g.

--[Effects: Creates an exact copy of the list passed in. A copy
--\of each element is made, so the copied list shares no elements
--I with the original.

The user may specify what keywords may be used and what Ada context they
are to be expected i n . This permils the user lo define a specific developnieiit
methodology, giving the user the rnethodology flexibility discussed above. For
instance, a methodology might require that every use clause that is placed in
code be followed I)y a Dyron annotation justifying the presence of the use
clause. A Hyron kf!yword "!Jst!~..lustification" could be used to enforce this
re q u ire men t.

One problern with rnethodologics is that it is sometimes diHicult to get
programmers to adhcrc to them. Byron attcrnpls to alleviate this problern
through the niechaiiisin of "phxqc checking," The uscr specifics what
development phase ;L givcri keyword should be used a t (keywords may also be
optional). I'rograrri source is thttn categorized within the program library
a.c:cordirig to w h a t p1i;i.w I i :w beeii rcachcd based 011 what keyword a~l~~ota t ior i s
:m: prcserit. The ;iIiaIyxcr will warn a user w h o iridicatcs that code has reacllcd
a phase wliirh it has riot; lrmls rri;ly also he written Lo report what phase any
portiori of code is ci i rre i i tly i i i . ' I l h i i Y , the "Use Justilicatioii" keyword described
;it)(> v e co I I I (I I)(! rwl i i i r c t l :it i r r i 1)lc i n e n tatiori pti;iso. W:u-iiirig rr1ess;iges wo u Id

13.2.1.8

indicate the absence of Use-Justification annotations when code w a s a~lalyzed
with a phase of implementation,

3.2 The Byron Data Base

The Byron system provides a database called the Ada program library, wliicll
provides a central repository for all the information concerning a project. 'ilk
information is primarily stored in the intermediate form known as D I A N A ,
including both the regular Ada syntactic and semantic information, and thch
Byron PDL information. Tools may be written which access either kind 01'
information, and may be independent of life cycle phase or not. The PDL code
enters the program library through the Byron analyzer. This prograin is th(5
f ront end of an Ada compiler, and provides full syntactic and semantic*
checking, as well as the checking specified for Byron annotations.

The program library permits Ada programs to be broken down into any n u r n b c r
of separate catalogs containing compilation units, which are linked together tx)
form the program library which comprises a program. Catalogs may be citlicr
read-only resource catalogs, which contain a specific release of a s e t 0 1 '
compilation units, o r modifiable primary catalogs which generaly represell t ; I

new revision under construction. Configuration management is assisted by th(.
use of different revisions of a resource catalog. Thus, two projects might tw
using different revisions of the same resource catalog, so that the project usit ig
the older revision could avoid recompilations or regressions in the re ewer
rev is ion.

3.3 The Byron Tools

1001s are an csseiitial part of a programming support erivironnient bul it is t I i (.

selection o f tools :inti ttic! relationship between them that charactcrizes the,

working details of a truly integrated system. As we saw in section two. t h c > r c
are many factors to he considered when exarniriing a prograiiiiiiiiig
environmeril,. 'The f j y r o r i tools have been designed with an eyc to\v: l rc l
flexibility and srrioo tti clisse rriination of the information c.orlccrtlilig sys t < b I I i

u n d c r de ve lo prn e n t.

As we nokd before, a prograrrirnirig support environment rnust i~rclutlc tools t o
support cacti r) h i L y c of tht: softwarc life cycle, iirid itrust sliioot]l t]le trilli~i~io11
between pt1ii.qf:s. 'l'tic Ilyron LooIs fall i n t o two broad c.;Lk.gorics: tirst, t o o l 5
w h i c h assist with rr~ethodology and the life cycle phrncs, and st.c*orld, k)ols

which assist with prograrrirnirig tasks without regard to a specific discipli~io 01'

life cyclc? phwc. Mcthodology :ind life cycle tools includc an A d a I,;~sotl
I'D I , , dewrihctl carlicr, configuration manager for sourcc arid doculllentatioIi.
design reqii i re r r i c 1 1 L.j lrawahili ty pickage, data dictionary syste 111 and 111 o re.
Of the scc011(1 type of hol, L3yroii provitlcs ;I variety of k!cllnicnl progranirliillg
koo Is for s h l i c ; L I I :tlysis. 'I'I~c!sc include ;in A d:i co 111 pilc r, l i r i kc r, reco 111 pi la tio I I

manager, global CrOss-r(!f(lrCncer, sourcc forrriiatcr, program listc r and o the rs.
Arioltier wily o f ciikgorixilig I lyror i bo lv is by t h i ? form of t l i t b t hey oper;\t41 0 1 1 .

M il.1 i y of I , l i f ~ ' x) o IS, i I I (.I I I (1 i r i g thc global cross- rc fe re I ~ C C r , tlie d a b dic ti0 11:tn.y

I .

13.2.1.7

generator and the generalized document generator, operate OII the data
available in the program library. Other tools, such as the pretty printer,
statement profiler and the compile order generator, operate directly o n A d a
source code.

In an earlier section of this paper, we pointed o u t that an environrnent m u s t
permit user constructed tools. We have seen that the Byron I'DL permits the
user to store arbitrary information in the program library. Tools are also
provided which the user may use to extract that information from the program
library, as well as Ada syntactic and semantic infomiation. The first of these
tools is a generalized document generator, which creates documents based on
user written specifications. These specifications are written using an interpreted
language, BDOC, which permits the extraction of information from the
program library and the output of that information in a forrnated form. The
second tool is the program library access package (PLAP), a se t of Ada
subprograms which provide a window into the library. The user can extract
information about his program, as it evolves, without being concerned with the
internal structure of the library. Ada programs can be written which utilize the
P L A P to query the program library and output individually tailored reports.
Using this package, it is possible to construct complex tools such as a hierarchy
chart drawer o r a program interconnectivity matrix. These two tools provide
the elementary tools spoken of in 2.2.

Also pinpointed earlier was the need to support reusability. I t is not unusual
for a programmer to duplicate the work of an associate sirnply because no one
knows that the work has been done before. This problem is especially
pronounced in a distributed computing environment. Even i f a piece of code is
available which does a similar task, it may be nearly as dificult to modify as LO
wri t e from scratch, since the programmer i r i u s l first understand h o w the
existing code works. The userman tool provitlvcl with Byron (-;1t1 assis1 i n
relieving this problem. The document created by userrt ian is a descriptio11 of
the purpose and use of package o r subprogr:un, and i s interldcd to br a
document of the design o f a package or subprogram following the desigil
methodology suggested by Liskov 1141. Other documents supporting other
design methodologies could be produced. One call then erivisioll a desigll
lihrary stored on a computer lo w h i c h prograriirricrs could refer when lookirlg
for a package to do a specific job. Another way to encourage reusability would
tw to create a user defined keyword "keywords." This keyword w o ~ l d br
Iwrrriittcd on all library u u i k , : L I I ~ the Lext followiiig i t would be ;t list of
krywords describing the functionality the unit provides. A simple prograin
roiild be written usirig thc I'lap which would extract the keyword list froill each
i i r i i t , i i i the 1)rogr;uii library. l h * l i (*Icrric*iil in ltio list would bc. cotiiparetl l~ ;L

,I r ing wIiic*)i the usor o f tIrc> prograrri would supply, and if they iiiatcIied, a11

o v c r v i c w of thc u r i i l W (J U I ~ bc printed. This would ;wsist user:, in siftilig
1 1) roug11 largc. 1il)rary.i o f sof'I,wiLr(' h find ;ippropri;ik LOOIS.

u.2. I .H

Documents of this nature also help support the software life cycle, by helping
to show the design as it currently exists, rather than as it is intended to cxist 01'

as it used to exist. Byron also offers a tool to support the tracking of'
requirements, to ensure that the final result of the project does in fact fulf i l l tltfb
needs it was intended to. The userman and requirements tracking tools help
Byron to support transitions from one phase to another, as does the fact tli;il
many of the tools are useful in multiple phases.

4. Project Use of the Byron Programming Environment

A comprehensive development system, such as Byron, is difficult to visual ize
at work. An operational view is necessary to appreciate the ability of s u c h ;L

large number b f tools to function together usefully. The following scenario is
presented as a brief illustration of how a hypothetical project might evolve
using this system.

First of all, Byron provides methods and tools to assist management with
organization, planning, tracking and reviewing of this project throughout its
entire life cycle. Since the user is permitted to decide what information ia to he
stored in Byron annotations, valuable project information such as names o f
implementors and/or designers, project progress information, pro$ct statistics
may be easily stored and accessed. Tools for computing the Halstead and
McCabe complexity metrics are included, which assist software manageme,, I in
several ways, including estimating the number of outstanding bugs and the t.ittir

needed to complctc pieces of software.

The requirements phase of this project defines the problem to be soIvctl.
defines a system design to solve the problem, and allocates the requirements 01 '
that design to hardware attd software. The desigit requireiiients traceability tool
provides the facility to relate requirements to design elemcnts and niodri 1c.s.
This is cspccially rtscful i r i lakr phares w h e r e the imp;ic-t of chaiigc ni;q' h,
quickly traced.

13.2.1 .o

bodies on the basis of annc*!ated specifications. As implementation begins in
earnest, the user can take full advantage of the PDL aspects of Ada, and whrre
Ada is dc?med inappropriate, Byron annotations may be defined to fi l l the gap.
A user defined Byron annotation "BD" or "to-be-determined" might be used ay
a general purpose annotation tn mark these comments, and p r m i t their
extraction and inchsiou in documents. Two such documents might be a repor!
on which mcdules are not yet fully implemented and what work riecds to be
done on them, or perhaps a design document of a more dctailed nature than
that produced by the userman tool. Coding and debugging are assisted by
frequent reports such as cross-references and compilation listings. Wher~
implementatioa is complete enough, the Ada compiler will generatc object code
(also stored in the program library) which may be linked for testing.
Implementation and testing are further assisted by a symbolic debugger and
performance analysis too;s.

Once the system hegins to work, it must be carefully tested. Software which
has not been adequately tested cannot be comsidered reliable. ?'he Byron tools
assist testing in several ways. First, the design requirements tracer shGws which
modules implement which requirernentu, helping to focus *sting eHorls.
Second, when a module is designed it's purpose is well understocd, and the test
which should be applied are o f t en more obvious :!,ail after implementation.
The functionality which a module is intended to provide should be tested, no t a
Ypecific implementathn. Dyron annotations provide a mean- for expressing Lhis
information at, whatever point in the life cycle it can best be specified.

Software sqstems spend the majority of their life cycle in maintenance phayc.
The cost in terms of both time and money of repairs and enhancements can be
greatly reduced by the availability of accurate docurneats which describe a
system at varhus levels, from requirements dowu to detailed design. I f :]I \

engineer must read code to undcrstarid a system, it may be a consideraLlr
amount of time before changes can be made to the system. Comments, whrll
they exist, tend to bc vagiic. nritl incomplete. Ijyrori provides a rii(.cha:iism for
specifying w h d s t r u c t u r v s sIioiiI(I b e corrirnentkhd and bvtiiit type of infornir\ t iotl
the comments should iricludr. One rnajor purpost' of Ijyron is to provide :)

series of d o c u r n ~ r n t s w h i c h descrihc the systeoi, provitllng irlsigllt a1 severa l
Icvels of corn plexity.

13.2.1 . t o 1 ORIGINAL PAGE IS
OF ? O R QUALIW

how this information can be expressed, such as the Ada framework
surrounding the information, these limitations serve lo focus the user's
attention on the purpose of the environment: to assist the creation of Ada
programs. Thus, the environment supports primarily the act of producing
programs, not the act of using that product. This is accomplished by helping
the user organize the information which would otherwisc be in some possibly
ou t of date design document, or as a series of random comments, or perhaps
not at all. The user may 'hen use this organization to extract only as much of
the information as is necessary for a specific tool to do its work, or to answer
specific questions concerning the software system.

Ack no wledg etne nts

This paper was reviewed and commented on by Michael Cordon, David
Ortmeyer and Haynes Turkle. Their suggestions and support are greatly
appreciated.

References

[11 Dijkstra, E.W. "The Humble Programmer" (Turing Award Lecture).
CommunicafiotLs of U t e A C M . vol. 15, No. 10 (October 1972) : 859-866.

121 Ivie, E.L. "The Programmer's Workbench - A Machine for Software
Development." Communications of h e ACM. Vol. 20 KO. 10 (Octobcr, 1977) :
746-753.

[31 Department of Defence. Requirements /or Ada Prograniming Supporl
Environments, 'STONEMAN'. (Washington : US Department of Defence,
1980).

14) Yourdon, E. and Constantien, L.1,. Structured Design. (N e w York :
Yourdon, Inc., 1978) : 3-9.

[51 Herideruori, P., ed. Proceedings of he ACM SfCSOk'?'/SfC'f-'LAN Sojtictcire
P i c > i v Engineering Symposium on Practical Soltware I1 clvelopnicnt I:'nvirotirric ids.

York: The Association for Computing Machinory, Iiic., IOH.1.

[61 Gutz, S., Wasverrnari, A.I., arid Spier, M.J. "Persorial Dcvelopinent Syskriis
for the Professional I'rogr:mmer." IE1:'IS Computer. Vol. 1 4 No. 3 , (A p r i l
1081) : 45-53.

[71 h4cCracker1, I1.D ., :tritl .lacksori, M.A. "Ilifc-Cyclc Concept Corisidered
JIar r r i fu l . " Software k'tryheering Nofes . Vol. 7 N o . 2, (April 1082) : 20-32.

13.2.1.1 1

Process." IBM Systems Journal. (vol. 24, No. 2, 1985) : 102-120.

191 Osterweil, L. "Software Development Environment Research: Directions for
the Next Five Years." IEEE Computer. Vol. 14 No. 4, (April 1981) : 35-43.

[101 Bergland, G.D. and Gordon, R.D. "Software Development Environments."
Tutorial - Sojtware Design Stratagics. 2nd ed. New York : IEEE, 1981 : 347-
353.

Ill] Wasserman, A.I. "Automated Development Environments." IEEE
Computer. Vol. 1 4 No. 4, (April 1981) : 7-10.

1121 Larsen, M.J., Ortmeyer, D.O., Turkle, H., and Gordon, M . "The
Byron1100 Program Support Environment." Proceedings of Use, Inc. Fall
Conference, uol. 1. Anaheim, CA, (November, 1985) : 119-134.

[131 Byron Program Development Language and Document Generator. Cam bridge
: Intermetrics Inc., 1985.

[141 Liskov, B. Modular Program Construction Using Abstartiom. M I T
Computation Structures Group Memo 184. September 1979.

1151 von Henke, F.W., Luckham, D., Krieg-Brueckner, B., and Owe, 0.
"Semantic Specification of Ada Packages." Ada in Use: Proceedings of t h e Ada
Internafional Conference. Cambridge: Cambridge University Press, 1985 : 185-
196.

0

[161 Luckham, D.C., von Henke, F.W., Krieg-Brueckner, B., Owe, Q. Anna: A
Language / o r Annolaling Ada Programs. Computer Systems Laboratory
Technical Report 84-261. Stanford University. July, 1984.

13.2.1.12

